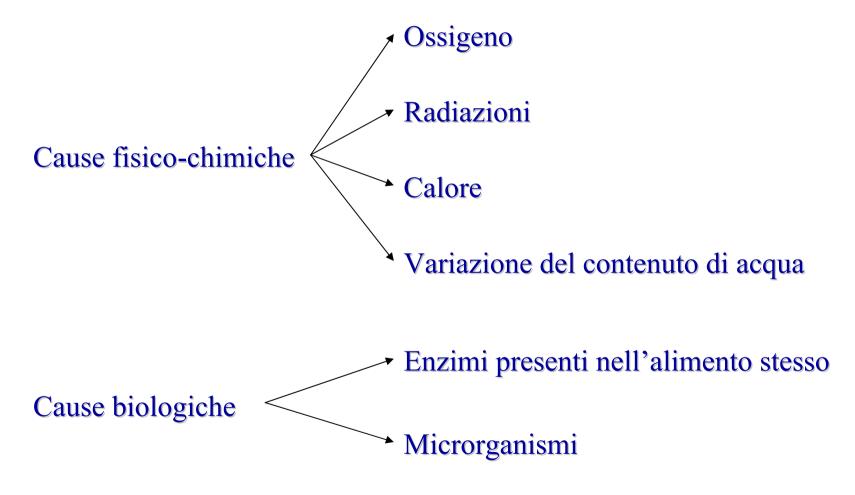


Università degli Studi della Calabria Facoltà di Ingegneria

Conservazione degli Alimenti

Corso di Processi Agroalimentari


Conservazione degli Alimenti

- Insieme di tecniche utilizzate per ridurre l'alterazione naturale degli alimenti ed aumentarne la durata
- Gli alimenti freschi vanno incontro a trasformazioni che li rendono, in generale, non commestibili
- Tecniche tradizionali, come cottura, essiccamento, affumicamento, salagione, ecc. sono state largamente impiegate dai tempi più antichi
- Le prime industrie di conservazione sono nate in Europa nel secolo scorso, applicando su scala industriale tecniche tradizionali

Nasce la necessità di comprendere scientificamente le cause delle alterazioni

Alterazione degli Alimenti

E' possibile individuare sostanzialmente due gruppi di cause

Cause fisico – chimiche - 1

Dovute all'azione di vari agenti di natura fisica e/o chimica

<u>Ossigeno</u>

- Provoca:
 - Irrancidimento nelle sostanze grasse,
 - inattivazione delle vitamine,
 - perdite di aromi;
 - imbrunimento delle verdure tagliate e dei succhi vegetali.
- Sono sufficienti in genere quantità molto piccole (alcuni ppm)

Succhi di frutta	10 ppm
Latte	1-8 ppm
Birra	1-4 ppm

Cause fisico – chimiche - 2

Radiazioni

- Luce e raggi UV provocano l'innesco di varie reazioni come l'irrancidimento o l'inattivazione delle vitamine.
- Luce e ossigeno (insieme o da soli) provocano alterazioni organolettiche in molti alimenti (sapori e colori)
- I raggi IR provocano aumento della temperatura e conseguenti danni su elementi termolabili

Calore

• Elevate temperature provocano disidratazione e cambiamenti di qualità. Accelerano reazioni biochimiche.

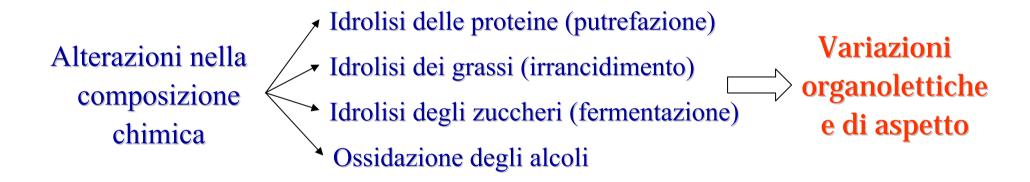
Cause fisico – chimiche - 3

Variazioni del contenuto di acqua

- Disidratazione provoca
 - ✓ Avvizzimento nei vegetali
 - ✓ Danni nei surgelati (la cosiddetta "scottatura", macchie biancastre)
- Assorbimento di acqua, dannoso per prodotti essiccati, provoca
 - ✓ rammollimento, perdita di freschezza e fragranza (ad es. biscotti);
 - ✓ formazione di grumi negli alimenti in polvere;
 - ✓ maggiore sviluppo di muffe, lieviti e batteri;
 - ✓ irrancidimento dei grassi
 - ✓ trasformazioni enzimatiche.

Cause biologiche - 1

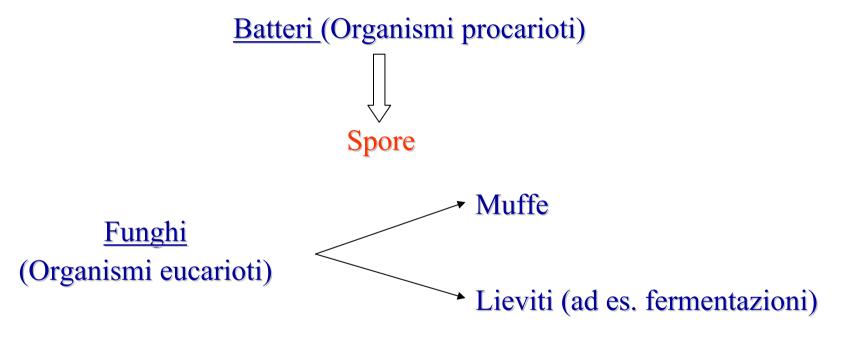
Sono tra le più importanti


Essenzialmente dovute all'azione di enzimi provenienti da due fonti

Cause biologiche - 2

Microrganismi contaminanti

Gli alimenti sono un terreno adatto all'accrescimento di numerosi organismi che possono provocare:


Compromissione della (Alimento veicolo di malattie infettive) salubrità Produzione di tossine (Tossinfezioni)

Esempi di infezioni

Malattia	Agente	Alimenti coinvolti	
Botulismo	ClostridiumProdotti in scatola, conserveBotulinum (tossina)semiconserve di carne e peso		
Avvelenamento da aflatossine	Aspergillus flavus	Cereali	
Salmonellosi	Salmonella enteritidis	Carni, uova, latte, alimenti ricchi di proteine (minestre, budini, ecc.)	
Colera	Vibrio cholerae	Acqua, brodi, latte, ecc.	
Listeriosi	Listeria monocytogenes		
Epatite	Virus A	Acqua, ortaggi, latte	
Gastroenterite	Vari virus	Molluschi, ortaggi, ecc.	

Cause biologiche - 3

Microrganismi contaminanti

Lo sviluppo dipende da vari fattori

Temperatura, Umidità, pH, Presenza di ossigeno, ecc.

Temperatura

- Aumento di T favorisce le reazioni biochimiche e quindi la velocità di duplicazione
- Aumento di T provoca danni alle componenti termolabili della cellula e quindi anche la morte
- L'azione combinata di due effetti opposti dà un intervallo ottimale di temperatura (T_{min} – T_{max}) in cui l'accrescimento è favorito

In funzione di T si dividono in

	T _{min} [°C]	T ottimale[°C]	T _{max} [°C]
Psicrofili	-5 ÷ 5	15 ÷ 20	$30 \div 35$
Mesofili	10 ÷ 25	25 ÷ 40	35 ÷ 50
Termofili	25 ÷ 45	45 ÷ 60	70 ÷ 90

temperatura limite

Patogeni≈ 37°C Muffe 20° - 30°C Lieviti 30° - 37°C

Effetto della temperatura sui microrganismi

-10 ÷ -20	Cessa ogni sviluppo microbico
0	Sviluppo psicrofili ritardato
10 ÷ 20	Massimo sviluppo psicrofili - Crescita ritardata mesofili
30 ÷ 40	Massimo sviluppo mesofili
50 ÷ 60	Massimo sviluppo termofili
70 ÷ 80	Temperature di pastorizzazione
90	Sopravvivono alcune specie termofile
100	Le forme vegetative sono distrutte
110	Le spore sono distrutte 60 – 80 min
121	Le spore sono distrutte 10 – 20 min

Umidità

- In generale i microrganismi non si sviluppano in sostanze con oltre il 65% di soluti (ad eccezione di alcune muffe)
- In ogni caso bassi contenuti di acqua riducono notevolmente la capacità di sviluppo dei microrganismi

pH (livello di acidità)

- In genere i batteri si riproducono bene con pH vicino alla neutralità
- Pochi sono in grado di svilupparsi in condizioni estreme, fuori dall'intervallo 4

 9
- Le muffe crescono in un intervallo di pH tra 2 e 9
- I lieviti si riproducono a pH bassi, tra 3 e 4

Radiazioni

• Tutte letali per i microrganismi, l'effetto dipende dal tipo di radiazione (raggi X, UV, γ , ecc.) e dall'intensità

<u>Ossigeno</u>

- L'effetto dipende dal tipo di microrganismo:
 - ✓ Aerobi obbligati, Anaerobi obbligati, Aerobi facoltativi.
- Muffe soprattutto aerobi, lieviti aerobi facoltativi, batteri hanno tutte e 3 le categorie

Presenza di sostanze chimiche

- Azione microbicida di alcune sostanze:
 - ✓ Acidi, abbassamento del pH (inorganici) e reazioni chimiche (organici);
 - ✓ basi, innalzamento del pH ed effetto dissolvente verso proteine;
 - ✓ metalli pesanti, inibiscono alcuni enzimi cellulari legando i gruppi -SH
 - ✓ antibiotici, uccidono i microrganismi a concentrazioni minime (0.01 0.1 ppm). Hanno meccanismi di azione peculiari (penicillina interferisce con parete cellulare)

Fonti di contaminazione

• Materie prime contaminate alla fonte

Benchè i tessuti interni siano sterili le superfici sono più o meno contaminate (es. uova contaminate esternamente, latte, ecc.)

Contaminazione ambientale

L'ambiente in cui ha vissuto l'animale o vegetale condiziona il grado di inquinamento (contaminazione di pesci rispecchia inquinamento delle acque in cui vengono prelevati)

• Contaminazione da pratiche di lavoro

La lavorazione, se non eseguita correttamente, può essere fonte di contaminazione attraverso l'uomo e attraverso macchinari ed utensili

(Normativa, HACCP)

La conservazione

Alimenti conservati : prodotti sottoposti a processi destinati a preservarne tutte le caratteristiche (nutrizionali e sensoriali) mettendolo al riparo per un periodo più o meno lungo da alterazioni che ne compromettano l'edibilità. Si distingue tra

• Conserve

Prodotti confezionati in contenitori ermetici che si mantengono a lungo a temperatura ambiente o a basse temperature

• <u>Semiconserve</u>

Prodotti stabilizzati per un tempo limitato, attraverso trattamenti meno drastici

• Prodotti trasformati

Hanno subito trasformazioni più o meno profonde della struttura e dei caratteri originali (prodotti fermentati, salati, prosciugati, stagionati, ecc.)

Molti alimenti considerati *freschi* hanno subito vari trattamenti e quindi in realtà vanno considerati *conservati*

Metodi di conservazione

Metodi fisici

A 14 a tamen anatoma	astorizzazione terilizzazione	
Basse temperature \	Refrigerazione Congelamento	
Disidratazione \longrightarrow $\begin{cases} Cc \\ Es \end{cases}$	oncentrazione ssiccamento	
Radiazioni Radiopastorizzazione/sterilizzazione Antigermogliamento		
Atmosfera modificata>	Stoccaggio in atmosfera controllata Confezionamento sotto vuoto o in atmosfera modificata	

Metodi di conservazione - 2

Metodi chimici

Salagione

Conservanti naturali —— Uso di zucchero

Conserve sott'olio, sott'aceto

Conservanti artificiali

Uso di antiossidanti
Uso di antimicrobici

Metodi chimico-fisici

Affumicamento

Metodi Biologici

Fermentazioni

Metodi di conservazione - 3

Classificazione in base alle alterazioni contro cui sono rivolti

- Contro i microrganismi
 - ✓ Microbiostatici, bloccano l'attività microbica senza eliminarli: pastorizzazione, refrigerazione, essiccamento, concentrazione, salagione, atmosfera modificata, ecc.
 - ✓ Microbicidi, distruggono i microorganismi presenti: *sterilizzazione*, *congelamento*, *radiosterilizzazione*, *additivi antimicrobici*.
- Contro le attività enzimatiche,
 - ✓ denaturazione irreversibile con alte temperature
 - ✓ Arresto provvisorio con freddo e disidratazione
 - ✓Contro l'imbrunimento aggiunta di antiossidanti
- Contro le alterazioni chimico-fisiche
 - ✓ Adatti contenitori
 - ✓ aggiunta di antiossidanti
 - ✓ stoccaggio a basse temperature